Scaling attributed network embedding to massive graphs
نویسندگان
چکیده
منابع مشابه
Attributed Social Network Embedding
Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship n...
متن کاملAccelerated Attributed Network Embedding
Network embedding is to learn low-dimensional vector representations for nodes in a network. It has shown to be effective in a variety of tasks such as node classification and link prediction. While embedding algorithms on pure networks have been intensively studied, in many real-world applications, nodes are often accompanied with a rich set of attributes or features, aka attributed networks. ...
متن کاملSymbolic Attributed Graphs for Attributed Graph Transformation
In this paper we present a new approach to deal with attributed graphs and attributed graph transformation. This approach is based on working with what we call symbolic graphs, which are graphs labelled with variables together with a formula that constrains the possible values that we may assign to these variables. In particular, in this paper we will compare in detail this new approach with th...
متن کاملA Structured Learning Approach to Attributed Graph Embedding
In this paper, we describe the use of concepts from structural and statistical pattern recognition for recovering a mapping which can be viewed as an operator on the graph attribute-set. This mapping can be used to embed graphs into spaces where tasks such as categorisation and relational matching can be effected. We depart from concepts in graph theory to introduce mappings as operators over g...
متن کاملDeep Gaussian Embedding of Attributed Graphs: Unsupervised Inductive Learning via Ranking
Methods that learn representations of graph nodes play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss – an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent nodes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the VLDB Endowment
سال: 2020
ISSN: 2150-8097
DOI: 10.14778/3421424.3421430